Clustering Via Decision Tree Construction
نویسندگان
چکیده
Clustering is an exploratory data analysis task. It aims to find the intrinsic structure of data by organizing data objects into similarity groups or clusters. It is often called unsupervised learning because no class labels denoting an a priori partition of the objects are given. This is in contrast with supervised learning (e.g., classification) for which the data objects are already labeled with known classes. Past research in clustering has produced many algorithms. However, these algorithms have some shortcomings. In this paper, we propose a novel clustering technique, which is based on a supervised learning technique called decision tree construction. The new technique is able to overcome many of these shortcomings. The key idea is to use a decision tree to partition the data space into cluster (or dense) regions and empty (or sparse) regions (which produce outliers and anomalies). We achieve this by introducing virtual data points into the space and then applying a modified decision tree algorithm for the purpose. The technique is able to find clusters in large high dimensional spaces efficiently. It is suitable for clustering in the full dimensional space as well as in subspaces. It also provides easily comprehensible descriptions of the resulting clusters. Experiments on both synthetic data and real-life data show that the technique is effective and also scales well for large high dimensional datasets.
منابع مشابه
Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach
Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملDecision tree-based simultaneous clustering of phonetic contexts, dimensions, and state positions for acoustic modeling
In this paper, a new decision tree-based clustering technique called Phonetic, Dimensional and State Positional Decision Tree (PDS-DT) is proposed. In PDS-DT, phonetic contexts, dimensions and state positions are grouped simultaneously during decision tree construction. PDS-DT provides a complicate distribution sharing structure without any external control parameters. In speaker-independent co...
متن کاملKnowledge discovery from patients’ behavior via clustering-classification algorithms based on weighted eRFM and CLV model: An empirical study in public health care services
The rapid growing of information technology (IT) motivates and makes competitive advantages in health care industry. Nowadays, many hospitals try to build a successful customer relationship management (CRM) to recognize target and potential patients, increase patient loyalty and satisfaction and finally maximize their profitability. Many hospitals have large data warehouses containing customer ...
متن کاملA Context Clustering Technique for Average Voice Models
This paper describes a new context clustering technique for average voice model, which is a set of speaker independent speech synthesis units. In the technique, we first train speaker dependent models using multi-speaker speech database, and then construct a decision tree common to these speaker dependent models for context clustering. When a node of the decision tree is split, only the context...
متن کامل